\(\int \frac {\sqrt {e x} (A+B x^2)}{\sqrt {a+b x^2}} \, dx\) [802]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 299 \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e}+\frac {2 (5 A b-3 a B) \sqrt {e x} \sqrt {a+b x^2}}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 \sqrt [4]{a} (5 A b-3 a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}+\frac {\sqrt [4]{a} (5 A b-3 a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}} \]

[Out]

2/5*B*(e*x)^(3/2)*(b*x^2+a)^(1/2)/b/e+2/5*(5*A*b-3*B*a)*(e*x)^(1/2)*(b*x^2+a)^(1/2)/b^(3/2)/(a^(1/2)+x*b^(1/2)
)-2/5*a^(1/4)*(5*A*b-3*B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*
(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/
2)+x*b^(1/2))*e^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^2+a)^(1/2)+1/5*a^(1/4)*(5*A*b-3*B*a
)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2
)))*EllipticF(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*e^(1/2)*((b*
x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {470, 335, 311, 226, 1210} \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt [4]{a} \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (5 A b-3 a B) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}-\frac {2 \sqrt [4]{a} \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (5 A b-3 a B) E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}+\frac {2 \sqrt {e x} \sqrt {a+b x^2} (5 A b-3 a B)}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e} \]

[In]

Int[(Sqrt[e*x]*(A + B*x^2))/Sqrt[a + b*x^2],x]

[Out]

(2*B*(e*x)^(3/2)*Sqrt[a + b*x^2])/(5*b*e) + (2*(5*A*b - 3*a*B)*Sqrt[e*x]*Sqrt[a + b*x^2])/(5*b^(3/2)*(Sqrt[a]
+ Sqrt[b]*x)) - (2*a^(1/4)*(5*A*b - 3*a*B)*Sqrt[e]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x
)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(5*b^(7/4)*Sqrt[a + b*x^2]) + (a^(1/4)*(
5*A*b - 3*a*B)*Sqrt[e]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(
1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(5*b^(7/4)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e}-\frac {\left (2 \left (-\frac {5 A b}{2}+\frac {3 a B}{2}\right )\right ) \int \frac {\sqrt {e x}}{\sqrt {a+b x^2}} \, dx}{5 b} \\ & = \frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e}+\frac {(2 (5 A b-3 a B)) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 b e} \\ & = \frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e}+\frac {\left (2 \sqrt {a} (5 A b-3 a B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 b^{3/2}}-\frac {\left (2 \sqrt {a} (5 A b-3 a B)\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} e}}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{5 b^{3/2}} \\ & = \frac {2 B (e x)^{3/2} \sqrt {a+b x^2}}{5 b e}+\frac {2 (5 A b-3 a B) \sqrt {e x} \sqrt {a+b x^2}}{5 b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 \sqrt [4]{a} (5 A b-3 a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}}+\frac {\sqrt [4]{a} (5 A b-3 a B) \sqrt {e} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 b^{7/4} \sqrt {a+b x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.06 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.27 \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 x \sqrt {e x} \left (3 B \left (a+b x^2\right )+(5 A b-3 a B) \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^2}{a}\right )\right )}{15 b \sqrt {a+b x^2}} \]

[In]

Integrate[(Sqrt[e*x]*(A + B*x^2))/Sqrt[a + b*x^2],x]

[Out]

(2*x*Sqrt[e*x]*(3*B*(a + b*x^2) + (5*A*b - 3*a*B)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((b*x^
2)/a)]))/(15*b*Sqrt[a + b*x^2])

Maple [A] (verified)

Time = 3.08 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.74

method result size
risch \(\frac {2 B \,x^{2} \sqrt {b \,x^{2}+a}\, e}{5 b \sqrt {e x}}+\frac {\left (5 A b -3 B a \right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) e \sqrt {\left (b \,x^{2}+a \right ) e x}}{5 b^{2} \sqrt {b e \,x^{3}+a e x}\, \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(222\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (\frac {2 B x \sqrt {b e \,x^{3}+a e x}}{5 b}+\frac {\left (A e -\frac {3 B a e}{5 b}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{e x \sqrt {b \,x^{2}+a}}\) \(226\)
default \(\frac {\sqrt {e x}\, \left (10 A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a b -5 A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a b -6 B \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a^{2}+3 B \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {2}\, a^{2}+2 b^{2} B \,x^{4}+2 B a b \,x^{2}\right )}{5 \sqrt {b \,x^{2}+a}\, b^{2} x}\) \(379\)

[In]

int((B*x^2+A)*(e*x)^(1/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/5*B*x^2/b*(b*x^2+a)^(1/2)*e/(e*x)^(1/2)+1/5*(5*A*b-3*B*a)/b^2*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*
b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-x/(-a*b)^(1/2)*b)^(1/2)/(b*e*x^3+a*e*x)^(1/2)*(-2*(-a*
b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/2)/b*EllipticF(((x+(-a*b
)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))*e*((b*x^2+a)*e*x)^(1/2)/(e*x)^(1/2)/(b*x^2+a)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.19 \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 \, {\left (\sqrt {b x^{2} + a} \sqrt {e x} B b x + {\left (3 \, B a - 5 \, A b\right )} \sqrt {b e} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right )\right )}}{5 \, b^{2}} \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/5*(sqrt(b*x^2 + a)*sqrt(e*x)*B*b*x + (3*B*a - 5*A*b)*sqrt(b*e)*weierstrassZeta(-4*a/b, 0, weierstrassPInvers
e(-4*a/b, 0, x)))/b^2

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.00 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.31 \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {A \sqrt {e} x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {B \sqrt {e} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {11}{4}\right )} \]

[In]

integrate((B*x**2+A)*(e*x)**(1/2)/(b*x**2+a)**(1/2),x)

[Out]

A*sqrt(e)*x**(3/2)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(7/4)) + B*s
qrt(e)*x**(7/2)*gamma(7/4)*hyper((1/2, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(11/4))

Maxima [F]

\[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \sqrt {e x}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*sqrt(e*x)/sqrt(b*x^2 + a), x)

Giac [F]

\[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \sqrt {e x}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((B*x^2+A)*(e*x)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*sqrt(e*x)/sqrt(b*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e x} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int \frac {\left (B\,x^2+A\right )\,\sqrt {e\,x}}{\sqrt {b\,x^2+a}} \,d x \]

[In]

int(((A + B*x^2)*(e*x)^(1/2))/(a + b*x^2)^(1/2),x)

[Out]

int(((A + B*x^2)*(e*x)^(1/2))/(a + b*x^2)^(1/2), x)